Relating protein adduction to gene expression changes: a systems approach†

Bing Zhang, a Zhiao Shi, bc Dexter T. Duncan, a Naresh Prodduturi, a Lawrence J. Marnett d and Daniel C. Liebler ad

Received 12th January 2011, Accepted 21st April 2011
DOI: 10.1039/c1mb05014a

Modification of proteins by reactive electrophiles such as the 4-hydroxy-2-nonenal (HNE) plays a critical role in oxidant-associated human diseases. However, little is known about protein adduction and the mechanism by which protein damage elicits adaptive effects and toxicity. We developed a systems approach for relating protein adduction to gene expression changes through the integration of protein adduction, gene expression, protein–DNA interaction, and protein–protein interaction data. Using a random walk strategy, we expanded a list of responsive transcription factors inferred from gene expression studies to upstream signaling networks, which in turn allowed overlaying protein adduction data on the network for the prediction of stress sensors and their associated regulatory mechanisms. We demonstrated the general applicability of transcription factor-based signaling network inference using 103 known pathways. Applying our workflow on gene expression and protein adduction data from HNE-treatment not only rediscovered known mechanisms of electrophile stress but also generated novel hypotheses regarding protein damage sensors. Although developed for analyzing protein adduction data, the framework can be easily adapted for phosphoproteomics and other types of protein modification data.

Introduction

Reactive electrophiles generated from toxic drugs, environmental chemicals, and endogenous oxidative stress represent a significant threat to cells because they react with many intracellular nucleophiles including DNA, RNA, phospholipids, and proteins. Covalent modification of proteins by electrophiles is known as protein adduction. Although protein adduction has been widely implicated in cytotoxicity, the mechanisms by which protein adduction elicits adaptive effects and toxicity remain largely unclear.1 Traditional biology studies focus on proteins involved in well-defined signaling pathways and address the effect of their adduction on the function of signaling networks and downstream gene expression.2–4 Valuable information has been generated from such focused studies but the pace of discovery has been slow.5 Moreover, a holistic view of electrophile stress cannot be achieved through such a reductionist approach.

Recent technological advances that enable global gene expression analysis and high-throughput identification of modified proteins have provided an opportunity for a systems-level investigation of protein adduction and its molecular consequences.5–8 Using the lipid product 4-hydroxy-2-nonenal (HNE) as an electrophile model, a proteomics study in human RKO cells identified about 400 protein targets of HNE.6 In a microarray study, the effect of HNE on gene expression in the same cell line was investigated.8 Although these studies provided rich information on electrophile stress from different perspectives, we hypothesize that a systematic integration of protein modifications with gene expression changes may further elucidate the signaling and transcriptional regulatory mechanisms through which protein adduction triggers gene expression changes.

Methods have been developed to integrate gene expression data and upstream regulatory data from high-throughput genetic and phosphoproteomics studies for the inference of signaling mechanisms.9–14 Because some adducted proteins can serve as stress sensors to activate signaling and transcriptional regulatory programs,2–4,15,16 protein adduction data hold information on upstream regulators of observed gene expression changes, similar to phosphoproteomics data. However, although it is likely almost all the hits in a phosphoproteomics study are involved in signaling events, we only expect a small fraction of adducted proteins to be involved in signaling.6,17 Therefore, one unique challenge in analyzing protein adduction data is to distinguish stress sensors from other adducted proteins, which is not...
addressed by existing signaling network inference approaches developed for phosphoproteomics data.

Bromberg and colleagues18 showed that it is possible to make signaling network inference using a protein interaction network and a list of conditionally activated transcription factors, without using upstream regulatory data. Applying a shortest path analysis, they built a cannabinoid receptor signaling network starting from a list of transcription factors activated by CB\textsubscript{1}R stimulation, which were identified in an array-based chromatin immunoprecipitation study. Because conditionally activated transcription factors can be identified based on gene expression data,19–22 we reasoned that this approach can be similarly used to expand a list of responsive transcription factors identified in gene expression studies to infer upstream signaling networks, which in turn would allow overlaying protein adduction data on the network for the prediction of stress sensors and their associated regulatory mechanisms. However, although transcription factor-based signaling network inference has been demonstrated in the cannabinoid receptor signaling network, it is not clear how well this approach can be generalized to different signaling pathways.

In this study, we developed a random walk based approach that infers upstream signaling networks based on a list of conditionally activated transcription factors. We demonstrate the general applicability of transcription factor-based signaling network inference using more than 100 NCI-Nature curated signaling pathways. Accurate signaling network inference allowed us to map protein adduction data to the inferred network to identify candidate stress sensors. Our integrative analysis of the gene expression data and protein adduction data from HNE-treatment not only rediscovered known mechanisms of electrophilic stress, but also generated promising hypotheses on protein damage sensors for experimental validation.

\textbf{Results and discussion}

\textbf{Overview of the analysis workflow}

Fig. 1 provides a schematic overview of our analysis workflow. First, protein–DNA and protein–protein interaction data are collected from public databases to build an interaction network, in which mRNA and protein derived from the same gene are modeled as different nodes. As a result, gene expression data and protein adduction data can be mapped to the mRNA nodes and protein nodes respectively. Although early studies modeled mRNA and protein products from the same gene as a single node,10,11,13 recent studies suggest that representing mRNAs and proteins as separate nodes can help highlight the regulatory role of proteins.9,14 Secondly, using well-established over-representation analysis,19–22 gene expression data are integrated with protein–DNA interaction data to infer transcription factors underlying observed gene expression changes. Next, a random walk with restart (RWR) analysis in combination with rigorous statistical evaluation is used to identify signaling proteins based on the assumption that these proteins are located close to the responsive transcription factors in the protein interaction network. RWR provides a global distance measurement that captures similarity of proteins in a network well.23,24 Finally, protein adduction data are superimposed on the identified signaling networks to infer candidate protein damage stress sensors and associated regulatory mechanisms.

\textbf{Evaluation of the random walk approach for signaling network inference}

A critical step in our workflow is the correct inference of signaling networks on the basis of a list of conditionally activated transcription factors. Based on the assumption that signaling proteins and transcription factors in the same pathway are located in proximity in a protein interaction network, we adapted a global distance measurement computed by random walk with restart (RWR) to score proteins according to their closeness to the input transcription factors. Specifically, we let the random walker start with equal probability from each of the input transcription factors to search for additional proteins in the signaling network. The walker iteratively transmits to its neighborhood with equal probability. At each step, it also has some probability to return to the transcription factor. The restart probability controls how far the random walker moves away from the transcription factor. The final score of a protein is defined as the steady-state probability that the walker will finally stay at the protein.

The score represents the overall network proximity of a protein with regard to the transcription factors of interest. The score defined by RWR has some important properties:25 compared with pair-wise metrics, it can capture the global structure of the graph; compared with traditional graph distances such as shortest path and maximum flow etc., it can capture the multifaceted relationship between two nodes. In protein interaction network-based candidate disease gene prioritization, RWR significantly outperforms methods based on local distance measures such as the shortest path.24

Some proteins may acquire a high score simply because of the network topology. To assess the statistical significance of the scores, we let the random walker start from the same number of randomly selected transcription factors to calculate random scores for each node (Fig. 1D). This process was repeated many times to generate multiple sets of random scores. To assess statistical significance, we performed two statistical tests: the first test indexes each node score on a ‘local’ null distribution, estimated from all random scores of the same node \(p_l\); the second test indexes each node score on a ‘global’ null distribution of random scores for all nodes \(p_g\). A significant \(p_l\) indicates the overall significance of the protein with regard to the input transcription factors, while a significant \(p_g\) ensures that the significance is not simply due to network topology. Proteins with both significant local and global \(p\) values were considered as candidate signaling proteins. Using selected input lists, we performed analyses based on 1000 and 10 000 random repetitions. For all tested input lists, both \(p_l\) and \(p_g\) showed extremely high correlation (Pearson’s correlation coefficient \(>0.99\)) for the two numbers of repetitions. Therefore, 1000 repetitions were used for \(p\) value calculation in this study. Based on the calculated \(p\) values, two levels of significance were investigated in this study, with \(p_l < 0.01\) and \(p_g < 0.01\) for a stringent level and \(p_l < 0.05\) and \(p_g < 0.05\) for a loose level.
We used the pathways curated by NCI-Nature to test whether the random walk approach was able to predict signaling proteins given transcription factors in the same pathway. Transcription factors were selected based on the Gene Ontology annotation of "transcription factor activity" (GO:0003700), including 960 proteins. Among the 127 NCI-Nature curated pathways, 103 had at least one transcription factor. The sizes of the 103 pathways ranged from 5 to 418, with a median of 46. The number of transcription factors in the pathways ranged from 1 to 85, with a median of 8.

We started the evaluation using a restart probability of 0.5. For each pathway, we used the hypergeometric test to evaluate whether predicted proteins significantly overlapped with those in the pathway. To avoid bias, all transcription factors were excluded from the hypergeometric test. The empirical cumulative distribution function (ecdf) of the hypergeometric p-values for all the 103 predictions based on the loose cutoff level ($p < 0.05$ and $p_b < 0.05$) was calculated and plotted as the solid red curve in Fig. 2A. Some predictions highly significantly overlapped with the real pathways with hypergeometric p values less than 10^{-25}. Most (83.5%) of the predictions showed significant overlap with corresponding pathways ($p < 0.01$). For comparison, for each prediction, we randomly selected the same number of proteins from the protein interaction network and tested their overlap with the corresponding pathway. This was repeated 100 times for each node and the ecdf of all the hypergeometric p values was plotted as the dotted red curve in Fig. 2A. Only 0.4% of the fake predictions showed significant overlap with corresponding pathways ($p < 0.01$).

Because proteins in the curated signaling pathways in general are likely to be located closer to transcription factors than other proteins, this result may simply reflect the ability of our approach to identify signaling proteins in a non-pathway-specific manner. Therefore, we further tested whether our predictions were specific to individual pathways. For each prediction, we created a fake pathway of the same size as the real pathway and used the hypergeometric test to evaluate whether the predicted proteins significantly overlapped with those in the fake pathway. Only 2.3% of the predictions showed significant overlap with the fake pathways ($p < 0.01$). This result suggests that our approach is able to identify signaling proteins in a pathway-specific manner.

Fig. 1 Overview of the systems approach for the integrative analysis of gene expression and protein adduction data. (A) Mapping data to network. Protein–protein interaction (PPI) and protein–DNA interaction data are modeled in an integrative network. mRNAs and proteins corresponding to the same gene are modeled separately in the PPI layer and the mRNA layer, with transcription factors (TFs) connecting these two layers. Transcription factors, non-transcription factor proteins, and mRNAs are represented as square, round, and triangle nodes, respectively. Gene expression data and protein adduction data are mapped to the network. In the mRNA layer, up-regulated genes, down-regulated genes, and genes with no significant change are colored in red, green, and yellow, respectively. In the PPI layer, adducted proteins are highlighted with blue circles around the nodes. (B) Transcription factor inference. Over-representation analysis is used to identify transcription factors that are responsive to the treatment. Responsive transcription factors are colored in red, while non-responsive transcription factors are colored in yellow in the PPI layer. (C) Walking the interactome. Random walk with restart is used to score all proteins in the PPI network for their network proximity to the responsive transcription factors. Based on the scores, each node in the PPI layer is colored with a gradient from red to yellow (high score to low score). (D) Significance evaluation. A global null score distribution for all nodes and a local null score distribution for each node are estimated by scores generated from randomly created transcription factor sets (Rdm_1 through Rdm_n) and used to evaluate the significance of the real scores for each node. (E) Subnetworks that constitute of significant proteins are defined as responsive signaling networks. Overlaying protein adduction data on the inferred signaling networks allows the detection of candidate stress sensors and associated regulatory mechanisms.

Fig. 2A Some predictions highly significantly overlapped with the real pathways with hypergeometric p values less than 10^{-25}. Most (83.5%) of the predictions showed significant overlap with corresponding pathways ($p < 0.01$). For comparison, for each prediction, we randomly selected the same number of proteins from the protein interaction network and tested their overlap with the corresponding pathway. This was repeated 100 times for each prediction, and the ecdf of all the hypergeometric p values was plotted as the dotted red curve in Fig. 2A. Only 0.4% of the fake predictions showed significant overlap with corresponding pathways ($p < 0.01$).
real pathway by randomly selecting proteins from all non-
transcription factor proteins in the NCI-Nature curated
pathways and tested the overlap between the prediction and
the fake pathway. This analysis was repeated 100 times for
each prediction, and the cdf of all the hypergeometric
\(p \) values
was plotted as the dashed red curve in Fig. 2A. As expected,
about 29.9% of the fake pathways with random signaling
proteins showed significant overlap with corresponding
predictions \((p < 0.01) \). However, the Kolmogorov–Smirnov
test indicated enormously significant difference between this
cdf (the dashed red curve) and the cdf of the
\(p \) values from the
comparisons of real predictions and real pathways (the solid
red curve, \(p = 1.03 \times 10^{-34} \)).

For predictions based on the stringent cutoff level \((p_l < 0.01 \)
and \(p_g < 0.01 \)), as shown in the solid green curve in Fig. 2A,
61.2% of the predictions showed significant overlap with
corresponding pathways. For comparison, the percentages of
significant overlap comparing random predictions vs. real
pathways and real predictions vs. fake pathways were 0.4%
and 7.6%, respectively (Fig. 2A). These results suggest that the
random walk approach was able to predict proteins in a signaling
pathway given transcription factors in the same pathway.
Prediction based on the loose cutoff level showed better sensitivity,
but it might pick up some non-pathway specific signaling
proteins. Prediction based on the stringent cutoff level showed
better specificity, but sacrificed sensitivity. We noticed that
incorrect predictions were more likely to happen in pathways
with only one transcription factor or more than 50 transcription
factors, indicating that the method might be more appropriate
for pathways with 2–50 transcription factors.

The restart probability is an important parameter in the
RWR analysis. To test the robustness of the prediction
performance against parameter variations, we calculated the
proportion of significant predictions \((p < 0.01) \) based on both
loose and stringent cutoff levels for a wide range of restart
probabilities (0.1–0.9). As shown in Fig. 2B, the prediction
performance is very stable over the tested parameter range.
Based on this result, we used the restart probability of 0.5 for
the inference of the HNE-responsive signaling network.

**Identification of transcription factors responsive to HNE
treatment**

We used a previously published microarray gene expression
data set\(^6\) to infer transcription factors that are responsive to
HNE treatment. With a False Discovery Rate (FDR) cutoff of
0.01, 311 genes were up-regulated in the RKO cells after 6 h of
60 μM HNE treatment, while 426 genes were down-regulated.
We performed the over-representation analysis for the two
gene lists against 182 gene sets of transcription factor targets
and identified potential transcriptional regulatory mechanisms
underlying the gene lists (Table S1, ESI\(^\dagger\)). The up-regulated
gene list was significantly (FDR < 0.01) enriched with targets
of 14 transcription factors, including CREB1, ATF2, CDC5L,
HSF1, HSF2, NFYB, CEBPA, E4F1, SREBF1, USF1,
CEBPΔ, ATF4, ATF3, and FOXO1. The down-regulated gene
list was significantly enriched with targets of four transcription
factors, including MYC, E2F1, E2F3, and NRF1. Interestingly,
only one transcription factor (ATF3) was included in the
differentially expressed gene lists (Table S1, ESI\(^\dagger\)), which was in
agreement with previous reports that many transcription factors are not regulated at the transcriptional level.21,26

Some of the transcription factors are known to be responsive to HNE treatment, such as HSF1, CREB1, ATF2, NRF1, MYC, and E2F family transcription factors.15,27–30 In addition, several others are well-known players in stress response, including ATF4, HSF2, SREBF1, and USF1. Interestingly, although Nrf2 (NFE2L2) is a well-known transcription factor in response to electrophile stress,4 it was not identified as significant in our analysis. Among the 246 predicted targets of Nrf2, only 4 overlapped with the 311 up-regulated genes (enrichment FDR = 0.67) and 6 overlapped with the 426 down-regulated genes (enrichment FDR = 0.99). Because the transcription factor target database used in the study was constructed based on computational analysis,31 the failure to identify Nrf2 might be due to false positive- and false negative-predictions in the database. On the other hand, as the enrichment analysis is reasonably robust against imperfect pre-defined gene sets, it is also possible that the Nrf2-driven transcription program was not altered in the cell line under the specific condition, i.e., time and dose of HNE treatment. We are designing experiments to further investigate these possibilities.

Inferring the HNE-responsive signaling network based on predicted transcription factors

We applied the random walk approach to infer the HNE-responsive signaling network based on the 18 predicted transcription factors. 29 and 199 proteins were identified based on the stringent and loose cutoff levels, respectively. Fig. 3 depicts the interaction network of the 199 proteins identified based on the loose cutoff level, which includes 887 interactions. The 29 proteins identified based on the stringent cutoff level are shown in larger node size and the transcription factors used as the input are labeled in blue. Among the 18 input transcription factors, only 16 made it into this network.

In order to highlight biological functions associated with this network, we performed the Gene Ontology biological process enrichment analysis using WebGestalt.32 Genes involved in the cell cycle (49 genes colored in pink and 2 genes colored in green in Fig. 3) and RNA splicing (24 genes colored in cyan and 2 genes colored in green in Fig. 3) were significantly enriched in the network, with the enrichment FDRs of 1.39×10^{-13} and 8.17×10^{-11}, respectively. It has been reported that HNE can induce the accumulation of cells in
the G0/G1 phase of the cell cycle in both yeast and human cancer cells.30,33 The inferred network included important genes in cell cycle arrest such as CDKN1A, CDKN1B, CDKN2A, CDKN3, MYC, NBN, PA2G4, RASSF1, and RB1. The identification of mRNA splicing proteins was unexpected. Recently, it has been suggested that mRNA splicing may be an overlooked target of stressing agents, such as heat shock.34 Different mechanisms have been proposed to block constitutive mRNA splicing and to affect alternative splicing regulation in order to modulate gene expression during recovery from stress.

Intriguingly, the transcription factor CDC5L serves as a hub in the inferred network with many connections to both cell cycle proteins and RNA splicing proteins (Fig. 3). CDC5L is the first transcriptional regulator shown to affect G2 progression and mitotic entry in mammalian cells.35 Moreover, it has also been found to be an essential component of a non-snRNA spliceosome, which contains at least five additional protein factors and is required for the second catalytic step of pre-mRNA splicing.36 Better understanding of the triple roles of CDC5L in transcription, cell cycle, and RNA splicing regulation may shed light on the complex molecular mechanisms of HNE response.

Because DNA damage response is a hallmark of oxidative stress and the DNA damage response network has been well understood, we further compared the inferred network with the DNA damage response network curated in the WikiPathways database.37 Among the 199 proteins in the inferred network, 15 overlapped with the DNA damage response network ($p = 2.54 \times 10^{-13}$ in the hypergeometric test for enrichment, Fig. 4), reconfirming the biological relevance of the inferred network. In contrast, among the 737 differentially expressed genes in response to HNE treatment, only 5 were involved in the curated DNA damage response network ($p = 0.10$, Fig. 4).

This result further highlights the ability of the network inference approach in revealing signaling proteins that are not visible by changes in mRNA concentrations.

Inferring stress-sensing proteins and associated regulatory mechanisms

The ability to predict a biologically meaningful HNE-responsive signaling network allowed us to map protein adduction data to the network and to infer candidate HNE-sensing proteins. Among the 417 HNE adducted proteins reported in ref. 16, one of them, CCNA2, was included in the 29 proteins identified based on the stringent cutoff level. Additionally, seven proteins were identified based on the loose cutoff level, including EEF1G, HSPB1, LMNA, PPA1, PPP2R1A, RUVBL2, and SF3A1 (Table S2, ESIw). Associating these results with the protein–DNA interaction data and the gene expression data led to some interesting hypotheses on possible mechanisms through which the adducted proteins trigger observed gene expression changes. Some of the hypothesized mechanisms are well supported by previous studies. Fig. 5 shows two such examples for the inferred HNE-sensors CCNA2 and RUVBL2.

CCNA2 was significantly down-regulated at the mRNA level after the HNE treatment (FDR = 0.00038). Nevertheless, its protein product Cyclin A2 displayed a statistically significant increase in adduction with increasing HNE exposure concentration,6 suggesting specific binding between HNE and Cyclin A2. Cyclin A2 is essential for cell cycle progression through G1/S and G2/M transitions.38 In mammalian cells, the G1 checkpoint involves phosphorylation regulation of retinoblastoma protein (pRb), the product of the RB1 gene.39 Cyclin A associated kinase activity is a rate limiting factor for pRb phosphorylation.40 Phosphorylation of pRb by cyclin...
A/Cdk2 leads to the activation of E2F family transcription factors, which have binding sites in the promoters of many genes that are involved in cell cycle progression control. Although CCNA2 itself was not listed as a target of E2F1 and E2F3 in the database derived from computational prediction, two E2F binding sites have been reported in the promoter region of cyclin A, and the expression of cyclin A has been found to be induced by E2F1. A previous study in leukemic cells suggested that HNE inhibits cyclin A expression, causing the dephosphorylation of pRb and an increase in the pRb:E2F1 complex, which in turn inhibits the E2F-dependent cell cycle gene expression. In addition to consistency with this model, our results also raised the interesting possibility that the adduction of cyclin A2 by HNE may initiate the arrest of cell cycle progression. Moreover, we found that the E2F target genes down-regulated by HNE were enriched not only in cell cycle genes, but also in RNA splicing genes (Fig. 5A). This complemented our signaling network analysis results and suggested the inhibition of RNA splicing as a possible mechanism in response to HNE-induced stress, in addition to cell cycle arrest. Consistently, enrichment analysis of the 407 HNE adducted proteins against all pathways in the WikiPathways database identified mRNA processing as the most significantly enriched pathway (22 proteins, $p = 1.63 \times 10^{-21}$, Fig. S1 (ESI†)). Although preliminary, these results raised the possibility that the adduction of mRNA processing proteins may serve as a general strategy to slow down gene expression during stress recovery.

Activating transcription factor 2 (ATF2) is implicated in transcriptional control of stress-responsive genes. Using a yeast two-hybrid screen, the RUVBL2 product TBP-interacting protein 49b (TIP49b), a component of the INO80 chromatin-remodeling complex, was identified as an ATF2-interacting protein. Forced expression of TIP49b increased TIP49b–ATF2 association and efficiently attenuated ATF2 transcriptional activities under normal growth conditions as well as after UV treatment, ionizing radiation, or activation of p38 kinase. Therefore, the interaction between ATF2 and TIP49b has been proposed as a mechanism that serves to limit ATF2 transcriptional activities. Our results suggested that the adduction of TIP49b by HNE may release ATF2 from TIP49b and allow it to activate downstream gene expression in response to HNE-induced stress. Consistently, ATF2 targets up-regulated by HNE were enriched with genes involved in the regulation of transcription and homeostatic process (Fig. 5B).

Besides CCNA2 and RUVBL2, possible regulatory mechanisms associated with other predicted stress sensors could also be inferred. For example, activation of heat shock...
This journal is © The Royal Society of Chemistry 2011 Mol. BioSyst., 2011, 7, 2118–2127

genes is a well-known response to HNE treatment. PP2R1A, the PR65 (A) subunit of protein phosphatase 2A has been reported to interact with HSF2, an HSF family transcription factor. HSF2 is physically associated with HSF1 under stress conditions and the formation of heterocomplexes between HSF1 and HSF2 results in enhanced activity to activate the hsp70 promoter when compared with HSF1 or HSF2 homotrimers. It is possible that the modification of PPP2R1A by HNE may release its interaction partner HSF2, which forms heterocomplex with HSF1 to activate down-stream gene expression in response to stress. Indeed, HSF1 and HSF2 targets up-regulated by HNE were highly significantly enriched with genes that are involved in response to stimulus (p = 2.77 × 10⁻⁵). As another example, SF3A1 (subunit 1 of the splicing factor 3a, which is necessary for the in vitro conversion of 15S U2 snRNP into an active 17S particle that performs pre-mRNA splicing) physically interacts with CDC5L. It is possible that the modification of SF3A1 by HNE may serve as a mechanism to allow CDC5L to move from the RNA splicing role to the transcriptional regulation role and activate downstream gene expression. To allow biologists to explore the inferred HNE-responsive signaling network for hypothesis generation, we have made the network available in the eXtensible Graph Markup and Modeling Language (XGMML format) (ESI† 1), which can be opened in Cytoscape or other network visualization and analysis tools.

In this study, the random walk-based inference of signaling networks was developed for the analysis of protein adduction data where only a small proportion of modified proteins were expected to be involved in signaling. Therefore, protein modification data were not used in the step of network inference. However, this method can be easily extended to accommodate other types of protein modification data that are rich in signaling information, such as phosphoproteomics data, by allowing the random walker to start from both transcription factors and modified proteins. This will likely increase the specificity of signaling network inference, which was not ideal in our evaluation using only transcription factor information, especially for the predictions based on the loose cutoff level.

The performance of network inference is closely related to the quality of the protein interaction networks, while the current version of the protein interaction network undoubtedly has many false positive and false negative interactions. To evaluate the robustness of the RWR method against such noise, we generated 1000 networks from the original network by introducing 10% variations through edge switching and compared the steady state scores for all nodes based on these networks to those based on the original network. The scores based on altered networks showed high correlation to those based on the original network (average Pearson’s correlation coefficient above 0.95), suggesting the robustness of the RWR method. Although a binary protein interaction network was used in this study, recent works suggest that it is beneficial to include the reliability of the protein interactions in network inference. The random walk-based approach can be extended to incorporate this information by allowing the random walker to transmit to its neighbors with the probability that is proportional to corresponding interaction reliability. Moreover, the interaction network used in this study was context independent and included interactions that could exist in various conditions. Better customization of the protein interaction network based on protein expression and co-expression data will help eliminate proteins and interactions that are irrelevant to a specific context (e.g. cell line, disease state, developmental stage, etc.).

The current analysis dichotomizes transcription factors into responsive and non-responsive groups based on a statistical cutoff, which may lead to the complete loss of information on important transcription factors that do not make the cutoff. In future studies, information on the reliability of transcription factors and modified proteins can be integrated in the inference by allowing the random walker to start from these nodes with different probabilities.

Taking above considerations into account, we believe that our method represents a general and flexible framework for the inference of transcriptional and signaling regulatory mechanisms through relating protein modification to gene expression changes. Although most of the successful network inference studies were carried out in yeast, our results suggested that this type of analysis is also feasible in human studies.

In summary, the random walk approach in combination with the over-representation based transcription factor identification allowed the inference of signaling networks from microarray gene expression data, which in turn facilitated the integration of protein adduction data to detect candidate stress sensing proteins and mechanisms through which they trigger observed gene expression changes. Proteins in the inferred HNE-responsive signaling network significantly overlapped with the curated DNA damage response network, suggesting the biological relevance of our inference. The inferred network was enriched with proteins involved in the cell cycle and RNA splicing, signifying the importance of these two processes in HNE response. Further integrative analysis of the gene expression, protein adduction, protein–protein interaction, and protein–DNA interaction data identified eight candidate HNE sensing proteins and generated reasonable hypotheses that related protein adduction to downstream gene expression changes. Although developed for the analysis of protein adduction data, our method represents a general and flexible framework for the inference of transcriptional and signaling regulatory mechanisms by integrating protein modifications with gene expression changes.

Experimental

Data acquisition

The gene expression data were acquired from a previously published study, in which microarray experiments were conducted using RKO cells to explore transcriptional changes induced following treatment for 6 or 24 h with 5, 20, or 60 μM HNE. We focused on the 6 h of 60 μM HNE treatment because this is the most relevant to the protein adduction data set. The protein adduction data were acquired from a previously published study, in which RKO cells were exposed to 0, 50, or
100 μM HNE for 1 h and 417 proteins displaying a statistically significant increase in addition with increasing HNE exposure concentration were identified as HNE targets.

Human protein interaction data were collected and integrated from HPRD, MINT, intact, REACTOME, BioGRID, and DIP in April 2010. Only experimentally determined interactions supported by publications were considered to assure the reliability of the network. The consolidated data set comprised 94 146 interactions involving 11 660 proteins.

Gene sets that contain genes that share a transcription factor binding site were downloaded from the MsigDB (http://www.broad.mit.edu/gsea/mSigdb, version 2.5). The gene sets were derived from a comparative analysis of the human, mouse, rat and dog genomes and were organized by transcription factor binding motifs. We further collected known transcription factors for the binding motifs from the Transfac database (http://www.gene-regulation.com, professional version 12.1). Genes associated with different binding motifs that correspond to a common transcription factor were combined into one gene set. Gene sets associated with binding motifs that have no known transcription factors were not considered in this study. The final transcription factor target gene sets contained 182 transcription factors and 93 723 protein–DNA interactions.

The pathways curated by NCI-Nature were downloaded from the Pathway Commons database (http://www.pathwaycommons.org/, the June 29, 2009 version), which included 127 pathways.

Differential gene expression analysis

Gene expression data from RKO cells with 6 h of 60 μM HNE treatment were compared to those from the DMSO controls. Each group consisted of three replicates. cel files from the six chips were normalized using the Robust MultiChip Analysis (RMA) algorithm as implemented in Bioconductor.51 Probe set identifiers (IDs) were mapped to gene symbols based on the mapping provided by the Gene Expression Omnibus (GEO) database. Probe sets that mapped to multiple genes were eliminated. When multiple probe sets were mapped to the same gene, the median was calculated to represent the gene expression level. Because there were only three replicates in each group, the moderated t-test in the limma package was used to identify differentially expressed genes between the two groups. The moderated t-test uses an empirical Bayes method to moderate the standard errors of the estimated log-fold changes. This results in more stable inference and improved power, especially for experiments with small number of arrays. To account for multiple comparisons, False Discovery Rates (FDRs) were further calculated based on p-values generated from the moderated t-test using the Benjamini and Hochberg correction. An FDR of 0.01 was used to select significant transcription factor target gene sets and identify responsive transcription factors.

Random walk analysis

The random walk analysis was adapted from Kohler et al. The random walk technique exploits the global structure of a network (graph) by simulating the behavior of a random walker on a graph. From a starting node, the walker selects a neighbor of it at random and moves to the neighboring node. Then the walker selects a neighbor of this node at random and moves to it, so on and so forth. The sequence of nodes selected this way is a random walk on the graph. In a variant of the random walk, the walker may also choose to teleport to the start node with a certain probability, called restart probability. The restart probability enforces a restriction on how far we want the random walker to get away from the start node.

Random walk with restart (RWR) is formally defined as the following equation:

\[p^{t+1} = (1 - r)Wp^t + rp^0 \]

where \(r \) is the restart probability, \(W \) is the column-normalized adjacency matrix of the graph, and \(p^t \) is a vector of size equal to the number of nodes in the graph where the \(i \)-th element holds the probability of being at node \(i \) at time step \(t \).

In this study, we modeled a protein–protein interaction network with \(n \) proteins by an undirected graph and represent it as an \(n \times n \) binary adjacency matrix, where rows and columns correspond to proteins and a value of 1 at the position \((i,j)\) indicates that the proteins \(i\) and \(j\) interact. Each column in the matrix was further divided by its sum to generate the column-normalized adjacency matrix \(W \). The initial vector \(p^0 \) of size \(n \) was constructed such that an equal probability of \(1/k \) was assigned to the \(k \) nodes representing transcription factors of interest, while a probability of 0 was given to all other \(n-k \) nodes in the network. The final score of a protein in the network was defined as the steady-state probability that the random walker would stay at the node, which was solved by iterating the equation until convergence. Specifically, the iteration was continued until \(\sum_{k=1}^{n} |p^t_k - p^0_k| \) (i.e., the L1-norm of the difference between \(p^t \) and \(p^0 \)) fell below the predefined threshold of 10^-6.

To assess the statistical significance of the scores, we let the random walker start from the same number of randomly selected transcription factors to calculate random scores for each node. This process is repeated to generate multiple (1000 in this study) sets of random scores. Then, for each node, a local p value is estimated by comparing the real score to random scores from the same node, and a global p value is estimated by comparing the real score to random scores from all nodes.

The software was developed in C++ on the GNU/Linux operating system with support for multithreading. It can be downloaded from http://bioinfo.vanderbilt.edu/netwalker.

Gene ontology and WikiPathways enrichment analysis

Gene Ontology and WikiPathways enrichment analysis were performed using WebGestalt (http://bioinfo.vanderbilt.edu/webgestalt).
Network visualization
Networks were visualized using Cytoscape.55

Acknowledgements
We acknowledge Dr Lily Wang for critical reading of the manuscript. This work was supported by the National Institutes of Health (NIH)/National Institute of General Medical Sciences (NIGMS) through grant R01 GM088822 and NIH/National Institute of Environmental Health Sciences (NIEHS) through grants P30 ES000267 and P01 ES013125. This work was conducted in part using the resources of the Advanced Computing Center for Research and Education at Vanderbilt University, Nashville, TN.

References